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Abstract—Collaborative data analytics and text classification
are required in numerous application domains including health
data analytics, which has strict privacy constraints. However,
sharing data with other parties widens the attack surface and
thus increases the risk of the data being compromised. Research
on applications of secure multi-party computation to health data
analytics have mostly focused on structured text or numeric
data. In this work, we formulate a privacy-preserving multi-
party scheme for performing keyword-based classification of
unstructured text data, with a case study on medical text data.
Our scheme uses arithmetic secret sharing and we implement
it using the CrypTen framework. We also devise techniques
that significantly reduce computation time without impacting
accuracy, enhancing the practical feasibility of our approach.

Index Terms—Protected Health Information, PHI, Secure
Multi-Party Computation, MPC, Secret Sharing, Natural Lan-
guage Processing, NLP, privacy

I. INTRODUCTION

Data breaches are at an all-time high, and the average total
cost of a data breach rose to US$4.45 million in 2023. Many
breaches are caused by phishing, compromised credentials,
or insider threats [1]. Data breaches pose increased risks to
parties that share data with others for collaborative analysis.
Medical data in particular contains sensitive information about
patients, and is shared with researchers and healthcare pro-
fessionals for analysis. However, shared data can be exposed
if one or more parties are compromised or if they breach
trust. Collaborating parties may also uncover the identity of
people who are not present in their own dataset when linking
their data with each other [2]. A trusted third party (TTP)
may be relied upon to collect and analyze the data from
the collaborating parties and share the output. However, this
requires the collaborating parties to trust the TTP to perform
the analysis faithfully without breaching trust [3] and to not
fall victim to attacks that can expose the private data [4].

Cryptographic protocols can enable collaborative analysis
of distributed data while protecting the confidentiality of the
collaborating parties’ data from each other. Secure Multi-Party
Computation (MPC) allows two or more parties to jointly
compute a function on their encrypted inputs and obtain the
output while keeping their inputs private. For example, one
party can compare a person’s DNA against a database of
cancer patients’ DNA held by another party to determine if

Furkan Alaca
School of Computing
Queen’s University
Kingston, ON, Canada
furkan.alaca@queensu.ca

Farhana Zulkernine
School of Computing
Queen’s University
Kingston, ON, Canada
farhana.zulkernine @queensu.ca

the person is in a high-risk cancer group [5]; neither party
learns any information about the other party’s data except for
the output, which is only the category of cancer closest to
the person’s DNA. Two or more parties can also use MPC to
perform machine learning tasks on their private data [2] [6].

We propose and implement a collaborative Privacy-
Preserving Text Classification scheme for distributed medical
text data using Secret Sharing (PPTC-SS). Secret sharing
allows collaborating parties to provide each other with trans-
formed versions of their data that do not reveal any meaningful
information about the original data. The parties perform the
analysis task on the transformed data, and obtain the final
output by combining the results of the computations on the
transformed data. Secret sharing thus offers security benefits
over conventional data sharing, since all parties’ original
(plaintext) data remain confidential.

We evaluate our scheme on a real-life analysis task in-
volving unstructured medical chart notes of arthritis patients.
The analysis task is to find patients affected with knee or
hip arthritis, which are the commonly affected bone joints in
the arthritis patient population in primary care settings [7].
Knowledge of the affected bone joints can help determine ap-
propriate treatments such as drug prescriptions, physiotherapy,
or medical imaging referrals. This analysis task illustrates the
utility of patient-classification based on unstructured medical
text data, and can be generalized to other use case scenarios
involving different domain-specific text data. We present both
the conventional data sharing and analysis method and our
proposed PPTC-SS method for performing this task. We
demonstrate the feasibility and utility of our proposed PPTC-
SS method by a comparative evaluation of its performance
against the conventional method. We also devise optimizations
to improve the computation time and reduce the communica-
tion overhead of our proposed PPTC-SS method.

The rest of this paper is organized as follows. Section
IT introduces necessary background on MPC methods and
related work on applications of MPC to medical data analytics.
Section III describes the medical data analytics scenario, the
design of the conventional data sharing and analytics approach,
and the proposed MPC-based PPTC-SS approach. Section
IV describes our implementation. Section V presents and
discusses our experimental results. Section VI concludes and
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outlines some future research directions.

II. BACKGROUND AND RELATED WORK

We first introduce some of the primitives used in MPC
protocols, followed by related work that applies MPC to
medical data analytics. We then discuss challenges and prior
work on unstructured medical text classification.

Oblivious Transfer (OT) is a two-party protocol [8] where
a sender has m messages and a receiver selects & messages
to transfer without the sender knowing which message(s) it
sent [9]. Its simplest form is a 1-out-of-2 scheme where the
sender has two messages mg, m and the receiver selects a bit
b € {0,1}. OT guarantees that the receiver obtains m;, without
learning anything about m;_j, while the sender does not learn
anything about the receiver’s selected bit b.

OT is used as a building block for other MPC primitives
such as garbled circuits. OT is also used in Private Information
Retrieval (PIR) to query a database without revealing the
queried records to the database server [9] [10].

Garbled Circuits (GC) is a two-party protocol where
the parties evaluate an encrypted Boolean circuit to compute
an arbitrary function over their encrypted inputs [11]. The
evaluation of a garbled circuit does not leak any information
to either party about the other party’s inputs [12].

Garbled circuits have been applied to calculate the edit dis-
tance between a patient and a disease diagnosis on genomics
data [13] [14]. They have also been used with deep learning
to predict patient diagnoses [15] [16] [17]. Lazrig et al. [4]
proposed a privacy-preserving record linkage (PPRL) scheme
to identify records that belong to the same individual in two
different datasets containing structured medical data. They find
matching records by using Bloom filters and garbled circuits
to calculate the Dice coefficient of every pair of records across
the datasets. Aside from the output, no other information is
revealed to either party. It takes approximately eight hours to
find matches between two databases of 10,000 records.

Homomorphic Encryption (HE) allows users to perform
computations on ciphertext such that decrypting the result
yields a value identical to performing the same computations
on the original plaintext data. For example, adding two en-
crypted integers would result in the same outcome (when
decrypted) as adding the same integers in unencrypted form.

HE can be used by clients to store encrypted data on an
untrusted server [18] [19], which is unable to decrypt the data
without the client’s private key. The client can then query
the server to perform computations on the encrypted data
and return the encrypted result. This saves the client from
downloading and decrypting the data to compute on it locally.

HE can also be used to train and evaluate machine learning
models on encrypted data [20] [21] [22] to preserve the
confidentiality of the input data. The model can also be
encrypted and shared to allow other parties to apply it to their
data without learning the encrypted model’s weights.

Secret Sharing allows a secret to be divided into an
arbitrary number of shares and distributed among multiple
parties, such that no individual party learns any meaningful

information about the secret. A party (or an attacker) can only
reconstruct a secret if they collect a predetermined threshold
number of shares from the other parties. Blakley [23] and
Shamir [24] first introduced this idea independently in 1979.

Rogers et al. [25] proposed VaultDB, a framework to se-
curely execute SQL queries on two or more structured medical
data sources using a two-party protocol. One application is to
identify demographic groups that may have untreated or under-
treated hypertension in a patient population. Their framework
can handle up to one million input tuples efficiently, and the
protocol scales well as the amount of data increases. Van
Egmond et al. [26] developed a method to combine distributed
datasets and perform Lasso regression to identify high-impact
lifestyle factors of heart failure in Dutch patients. They use
Private Set Intersection (PSI) to identify records that appear
in two distributed datasets and use secret sharing to perform
their computations.

We use secret sharing in our proposed scheme, since it is
more easily scalable to an arbitrary number of parties [6].
This is advantageous for medical applications, since patients
may visit multiple hospitals and clinics. In secret sharing, the
collaborating parties each compute a function on shares of the
encrypted data, and the resulting outputs from all parties need
to be combined to decrypt the outcome of the function; this is
in contrast to HE, in which one of the parties independently
evaluates a function on all the encrypted data.

In this work, we demonstrate our proposed approach using
keyword-based classification of unstructured medical text data
to classify the type of septic arthritis as knee or hip or
both. Very few works exist in the literature that perform
keyword-based classification of unstructured medical text data
[7] [27] due to the inherent challenges of processing do-
main specific acronyms and medical vocabulary, and absence
of labelled training data required to train machine learning
models for classification. There have been more work in
automatic keyword extraction to find words that correlate with
certain phenomena [28] [27]. Luo et al. [29] and Judd et al.
[30] proposed email classification and back pain classification
models using topic modelling and keyword based approaches
respectively. Topic models are trained on labelled data but
can be used to first cluster text corpora for later application
of keyword specific categorization. Back pains have specific
medical terms and disease codes associated to classify location
and pain levels which are used in keyword based classification.
Generally, in natural language multiple synonyms can exist
for chosen words. In that case all synonyms can be used with
word embedding or vectorization techniques to classify text
data [7]. Since our work is more focused on achieving our
security goals, we use very simple keywords such as ’hip’
and ’knee’ to search for relevant text in Electronic Medical
Records (EMR) and apply word embeddings to capture more
contextual information (e.g., 'no pain in knee’, hip fracture’)
to classify patients having knee pain, hip pain, both knee and
hip pain, or neither.



III. DESIGN OVERVIEW

Medical data may be structured or unstructured and appear
in different schema across multiple distributed sources, such
as EMRs in primary care and hospital databases. Handling this
data requires abiding by stringent ethics and privacy policies to
protect patient privacy [31]. We consider a setting consisting
of three parties, where the first holds unstructured medical
data of patients, the second holds the criteria (e.g., keywords)
for classifying patients, and the third develops and holds an
algorithm to run on Party-1’s data with the criteria from Party-
2 as an input to the algorithm. We map this setting to a real-
world scenario as follows. Party-1 is a clinic or hospital that
holds unstructured medical notes spanning multiple years of
data from patients’ visits or encounters with primary care
providers. Party-2 is an insurance company that requires
medical information from Party-1’s data about individuals who
meet certain criteria to approve/reject insurance applications
or claims. Party-3 is a healthcare data analyst who has an
algorithm to extract patients’ information from Party-1’s data
given some criteria, which is provided by Party-2 in our use
case scenario. Party-3 does not contribute its own data to the
analysis task.

We assume that Party-1 and Party-2 each have Data Cus-
todians (DC), as is common in health research settings [32],
who hold the raw data and can de-identify it if applicable,
before sending it to a Data Scientist (DS). Medical data is
commonly de-identified to protect patient privacy before it is
shared [33] [34]. De-identification entails removing Protected
Health Information (PHI) such as names, addresses, phone
numbers, and birthdates or replacing them with masked data.
A unique identifier is often assigned to allow the de-identified
data to be linked back to the patient.

Below, we present Approach-1, a conventional plaintext
computation approach, and Approach-2, our proposed MPC-
based computation approach using secret sharing. Both of the
approaches map to the three-party scenario that we described
above, but Approach-2 offers additional security benefits that
Approach-1 does not. To compare the performance of the two
approaches, we select a case study for which we perform our
experiments. In our case study, Party-3 determines the affected
bone joints of a specific patient by employing a rule-based
classification technique that uses a set of keywords from Party-
2 to match against a selected arthritis patient’s unstructured
medical notes from Party-1. This scenario generalizes to other
application domains, where Party-1 holds unstructured text
data and Party-2 holds keywords that can be matched against
Party-I’s data by computing pairwise similarity measures
between words. This scenario can also be extended to settings
where the data is distributed across more parties: instantiating
additional parties with the same function as Party-1 or Party-2
changes little in the overall data analysis method described in
the following sections.

A. Approach-1: Conventional Plaintext Computation

The conventional plaintext computation approach is ex-
ecuted as follows and is illustrated in Fig. 1. First, in
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Fig. 1. Execution of Approach-1: Conventional plaintext computation. Grey
rectangles represent operations performed by an individual within the party
that it is located in. Arrows represent information flow and are labelled with
the data that is output by an operation or sent from one individual to another.

Step 1, the data custodian of Party-1, DC, retrieves the
data record of all medical notes corresponding to patient
A, Ca = {ca,,Cay,--sCay}, Where N is the number of
words contained in the record. DC; then de-identifies the
data to produce Dy = {da,,da,,...,day}, and sends it to
the data scientist, DS;. As the data custodian, DC; stores
data of other patients too (e.g., C'sz would denote patient B’s
data record), but since the analysis task in this paper only
operates on one patient’s data at a time, we simplify our
notation by focusing on a single patient A when presenting
our scheme. The data custodian from Party-2, DC5, retrieves
the lists of keywords K = {Kj, Ks,..., K}, where each
K; € K is a set of keywords corresponding to a diagnosis
label (e.g., knee, hip) and L is the number of labels. K
does not contain PHI in our setting, and thus DC5 sends it
to the data scientist DS, without de-identification. DS and
DSs then send Dy and K, respectively, to the data scientist
DSs of Party-3. DS3 preprocesses them in Step 2 to produce
DA/ = {dAll, dAzl, ceey dAN/} and K' = {K1/7K2,7 ce ,KL/}
respectively, and uses the data to determine the affected bone
joints for the specified patient A in Step 3. A one-hot result
vector R is produced, each bit of which corresponds to a
class label. A predicted class is indicated by the bit value
of 1 with the remaining bit values being 0. Since each
patient can have any number of diagnoses (e.g., in our setting,
either knee or hip arthritis, or both), or no diagnosis at all,
the number of elements in R equals the cardinality of the
power set of K, ie., [P(K)| = 2/¥l. Thus, in our affected
bone joint classification task, our result vector takes the form
R= (Tknee7 Thips TkneeAndHip rother)o

1) Keyword matching methods: Party 3 preprocesses the de-
identified patient record D 4 and the keywords K by applying
stop word removal, tokenization, lemmatization, and chunking,
and converts the resulting tokens into either word embeddings
or hashes (discussed below) to produce D4’ and K’. Then,
the affected bone joint classification task identifies whether
any word tokens in D 4" match any keyword tokens from K.
If the patient’s notes contain at least one knee-related token
and at least one hip-related token, we set TrneeAndHip = 1.
Otherwise, we set either 7. = 1 or 7p;, = 1 if the patient’s
notes contain at least one hip-related or at least one knee-
related token, respectively. If no keyword matches are found,



we set Toiner = 1. We evaluate two methods of keyword
matching as described below, which we use when D, and
K’ contain either word embeddings or hashes, respectively.

Word embeddings: Embeddings encapsulate semantic sim-
ilarities among words in a vector space. Party-3 determines the
similarity between each word token embedding ds, € DA’
and each keyword token embedding k; € K’ by calculating
the cosine similarity, defined as

_dai -k
lldag'|| - ||k

which yields a value between 0 and 1; values closer to
1 indicate higher similarity. We then apply a threshold to
determine if each keyword token in K’ is present in D ,’. We
do this by setting the threshold value to 0.95 to ensure that only
exact keyword matches meet the threshold, for the purpose of
allowing a like-to-like comparison of computation time with
our hashing-based scheme as described below. In practice, the
threshold should be tuned to improve classification accuracy.

Hashing: Using hashes instead of word embeddings reduces
data size, which helps to reduce computation and communi-
cation overhead with MPC. We use the BLAKE2 [35] hash
function to compute the hashes in D4’ and K’. However, word
similarity cannot be determined when comparing hashes; we
can only determine word equality. To find matching keywords,
Party-3 subtracts the hashes in D4’ and K’ and compares the
result to zero to determine if a match has been found.

2) Security and Privacy Limitations of Approach-1: In this
approach, Party-3 has access to Party-1’s clinical notes, which
although de-identified, contain information about patients,
their healthcare providers, other hospital or clinic staff, and
even family members who may not have consented to have
their identity used in research. Although there is an agreement
between the parties that allows Party-3 to use the clinical
notes, the patients’ identity, their family history, and their
healthcare providers’ identity are still exposed to another (po-
tentially corrupted) party [36]. Party-1 has to trust that Party-
3 will not abuse its power and correctly handle the clinical
notes without disclosing any PHI to unauthorized parties [3].
Moreover, Party-2 is required to disclose its classification
criteria, which it may prefer to keep confidential for business
or operational reasons. All the data sent by Party-1 and Party-2
(D4’ and K, respectively) are stored by Party-3, and thus an
attacker that compromises or colludes with Party-3 will have
access to all the data.

Sc(day' k;)

B. Approach-2: Secure Multi-Party Computation

We now discuss the security goals, threat model, and the
data flow (illustrated in Fig. 2) of our proposed MPC-based
PPTC-SS approach.

1) Security Goals: We employ secret sharing to protect the
confidentiality of Party-1’s and Party-2’s data from each other.
Thus, Party-1 and Party-2 should learn only the size of each
other’s inputs but nothing else. Party-3 should only learn the
output of the affected bone joint classification task; it should
not learn the plaintext input data from Party-1 or Party-2.

<
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Fig. 2. Execution of Approach-2: MPC with secret sharing. Grey rectangles
represent operations performed by an individual within the party that it is
located in. Data custodians (DC) obtain the initial data and de-identify it if
applicable; data scientists (DS) perform all subsequent operations. Arrows
represent information flow and are labelled with the data that is output by an
operation or sent from one individual to another.

2) Threat Model: We assume that communication channels
between the parties are secured, e.g., using Transport Layer
Security (TLS). We assume a semi-honest adversary model
where the parties do not deviate from the protocol. In medical
and other applications where malicious behaviour can lead to
serious legal, reputational, and financial consequences, a semi-
honest adversary model is sufficient since the entities involved
have little incentive to risk their reputation by behaving
maliciously or by colluding with each other [37] [38] [39] [40]
[41]. We also aim to ensure that an adversary that corrupts one
party to access its internal state and the data it receives during
the computation should not be capable of stealing or inferring
information about the other honest parties’ data (e.g., they
should not be capable of inferring the patients’ diagnoses)—
this ensures that a data breach of one party does not lead to
the compromise of other parties’ data or to any data leakage
from the execution of the protocol [5].

3) PPTC-SS Data Flow: As shown in Fig. 2, after Step
1, DS, has patient A’s de-identified record D 4 and DS5 has
the keywords K, as was the case in Approach-1. Next, in
Step 2, Party-1 preprocesses D 4 to produce D4’ and Party-2
preprocesses K to produce K'. In Step 3, Party-1 splits D 4’
into three secret shares [D 4”]1, [Da']2, and [D 4"]3. The square
bracket notation indicates that the element is a secret share.
Party-1 keeps [D4']; for itself and sends the other two shares
to Party-2 and Party-3, respectively. Similarly, Party-2 splits
K' into three shares [K']1, [K']2, and [K]3, keeps [K]2 for
itself, and sends the other two shares to Party-1 and Party-3,



respectively.

In Step 4, three-party computation is performed to exe-
cute the affected bone joint classification, with each party
executing the operations described in Section III-A on their
respective secret shares. Some of the operations (e.g., com-
puting cosine similarities between the secret shared val-
ues) require communication rounds between parties, which
take place during Step 4 of Fig. 2. Each party pro-
duces its corresponding secret share of the result vector
[R]p = {[Tknee]p; [Thip]pa [rkneeAndHip]py [rother]p}v where JARS
{1,2,3}. Party-1 and Party-2 then send [R]; and [R], respec-
tively to Party-3, which combines them with [R]3 to decrypt
the final result vector R = {rnee; "hip; "kneeAndHip, Tother }»
as depicted in Step 5 of Fig. 2. Thus, only Party-3 learns
whether any matches were found between Party-1’s clinical
notes and Party-2’s keywords, which in our scenario reveals
whether the patient has septic arthritis in the knee, hip, both,
or in another joint.

4) Protection of Data at Rest: The extraction and de-
identification of patients’ data (Step 1), preprocessing (Step 2),
and the creation and distribution of secret shares (Step 3) can
all be done in advance. After the distribution of secret shares,
DS, may delete the plaintext medical notes of all patients
and keep only its secret share of the patients’ medical notes,
and similarly D.S; may delete its plaintext keywords and keep
only its secret share of the keywords. This offers additional
protection for data at rest, since an adversary would need to
break into all three of DSy, DSs, and DS3 to obtain all of
their secret shares to reconstruct the medical notes and the
keywords. However, compromising DC7 or DCs would result
in the exposure of the medical notes or keywords, respectively.

Since Party-3 does not provide its own input data to the
affected bone joint classification, it is possible for Party-1
and Party-2 to perform two-party computation and send their
resulting secret shares to Party-3. This would save communi-
cation overhead compared to three-party computation, and thus
speed up the execution time. However, three-party computation
has a security advantage for protecting data at rest, since an
attacker would need to compromise three parties instead of
two parties to obtain all the secret shares.

C. Optimizations

We propose two optimizations to reduce the execution time
of Approach-2, as follows.

Optimization 1: Remove conditionals. When evaluating
conditional statements on secret-shared data, unlike conven-
tional if-statements, both results of the condition must be
evaluated to avoid leaking data [6]. To avoid this overhead,
this optimization removes conditional statements on secret-
shared values by performing MPC only for the similarity score
calculations, followed by Party-3 performing the thresholding
step. Thus, all parties compute the similarity scores for each
secret-shared word token in D4’ against each secret-shared
keyword in K’. Party-1 and Party-2 send their resulting
secret shares to Party-3. Party-3 then decrypts the similarity
scores by combining the secret shares, and performs the

word matching by applying the similarity threshold. If the
hashing method is used for word matching, the procedure
for this optimization is similar: Party-1 and Party-2 use their
secret shares to compute the difference between each secret-
shared word token in D4’ and each secret-shared keyword
in K’'. Then, Party-3 collects all the shares to decrypt the
results and compares each value to 0 to determine matched
keywords. While this optimization removes the comparatively
more expensive conditional operations, it introduces additional
decryption operations.

The disadvantage of this optimization from a security per-
spective is that Party-3 learns all the similarity scores. Thus,
limiting Party-3’s ability to reconstruct the medical notes
requires mitigations. We leave this to future work to explore,
e.g., by using techniques such as truncating the similarity
scores to the fewest number of significant digits required for
the thresholding step or adding random perturbations [42] to
the similarity scores.

Optimization 2: Stop decryption early. To reduce decryp-
tion time, we reduce the number of decryption operations
as follows. We split the similarity scores into L batches.
Each batch represents the distances between all of Party-2’s
keywords corresponding to a single diagnosis label (i.e., all
keywords in K; € K’ from Party-2, where 1 < i < L) and all
the word tokens in patient A’s clinical notes in D 4’ from Party-
1. If Party-3 finds a keyword match in one batch, it concludes
that the patient has the corresponding diagnosis and skips
the decryption of the secret shares remaining in that batch.
Party-3 then proceeds to decrypting the batch corresponding
to the keywords for the next diagnosis label, K7;+1'. If the
hashing method is used for word matching, the procedure for
this optimization is the same.

Optimization 2 thus reduces execution time for patients
with a positive diagnosis, since finding a keyword match
means that the remaining secret shares in the batch do not
need to be decrypted. Thus, measuring the execution time
or power consumption of Party-3 may help an adversary
infer information about the patient’s diagnosis. For example,
Party-1 and Party-2 may infer that the patient has a positive
diagnosis if they determine that Party-3 computed the results
more quickly. Countermeasures are thus required to prevent
information leakage, e.g., by delaying Party-3 from signalling
to Party-1 and Party-2 that the analysis task is complete.

IV. IMPLEMENTATION

We use PyTorch to implement our conventional scheme
and the CrypTen [6] framework to implement our proposed
MPC-based PPTC-SS scheme. CrypTen supports arithmetic
and Boolean secret sharing with an arbitrary number of parties
to perform computations on their private datasets. All secret
sharing operations occur in the ring Zsss. CrypTen is secure
against semi-honest adversaries that can corrupt up to n — 1
parties, satisfying our threat model stated in Section III-B2.

All binary and arithmetic secret sharing primitives imple-
mented in CrypTen are proven to be secure, and functions
that are compositions of these secure primitives are also secure



[6]. CrypTen uses private addition and multiplication on secret
shares to implement all other operations; non-linear functions
such as cosine (which we use to compute cosine similarity)
are implemented using numerical approximations that rely on
only addition and multiplication [6]. For efficiency, CrypTen
relies on a Trusted Third Party (TTP) to provide multiplication
triples during the computations, but the TTP otherwise does
not engage in the protocol. The TTP is assumed to be semi-
honest and able to correctly generate the triples. A TTP-
free solution relying on either homomorphic encryption or
oblivious transfer is planned [6].

A. Dataset Extraction and Preprocessing

We extract the dataset for Party-I’s unstructured text
data from the MIMIC-III database [43], which contains de-
identified patient data that is similar to primary care data
[7]. We select all 90 patients from the database who are
diagnosed with knee septic arthritis and hip septic arthritis
[44], of which 29 have clinical notes and 87 have medication
data. Of these patients, 30 have hip septic arthritis, 64 have
knee septic arthritis, and 4 have both diagnoses. We select
the “Nursing” category in the “NOTEEVENTS” table of the
MIMIC-III database to extract the unstructured data. Fig. 3
shows a sample synthetic clinical note of a patient after it is
de-identified.

Patient is due for knee surgery and knee replacement on [**2012-09-
07**], was referred to Dr [**Last Name (STitle) 1**] [**Name (STitle)
2*#*] by Dr [**Last Name (STitle) 3**], he prescribed Oxycontin 10 mg,
she uses 1 a day. Wearing braces on both knees. [**09-28%*] lungs clear,
severe OA knees. BP 120/80, HR 89.

Fig. 3. A sample de-identified clinical note.

Party-2 has a set of keywords that indicate the affected
bone joints of the arthritis patient, which will be matched
against Party-1’s unstructured text data. We use two sets of 12
keywords each for knee septic arthritis and hip septic arthritis,
respectively. The keywords consist of 1-word or 2-word strings
such as “hip pain”, “kneeseptic”, and “arthritis knee”.

We preprocess all the text data as follows. We apply stop
word removal, tokenization, lemmatization, and chunking to
the text data. Finally, depending on the configuration being
evaluated, we either use BioWordVec [45] to convert the word
tokens into 200-dimensional vector embeddings, or we use the
BLAKE2 hash function to hash the words.

We truncated the BLAKE?2 hashes to 32 bits, which offers
sufficient collision-resistance for our dataset and maximizes
performance since it can be stored in a single integer in a
PyTorch tensor; longer hashes can be used if required, at the
expense of speed. Approximately 77,162 unique words are
needed for a collision to occur with a probability of 0.5, as
computed by 2("*1/2, /In -1 where n is the bit-length of
the hashes (32) and A is the collision probability (0.5) [46].
There are 208,576 words in total (6,251 of which are unique)
in the clinical notes from the sample of patients we evaluated
on, and no hash collisions occurred in our experiments.

TABLE I
CONFUSION MATRIX FOR THE AFFECTED BONE JOINT CLASSIFICATION.
Actual
Knee | Hip | Both | Other
3 Knee 1 0 0 0
5 Hip 1 10 0 0
T | Both 0 0 1 0
& [Other | 6 10 0 0

B. Experimental Setup

We deployed our implementation on a single machine with
an Intel i5-1035G1 processor and 8GB of RAM, with Party-1
and Party-2 each running in a virtual machine (VM) and Party-
3 running on the host machine. The host machine and both
VMs ran Ubuntu 22.04, Python 3.11, and CrypTen 0.4.1. The
parties communicated over bridged virtual network interfaces.
Since CrypTen is built on PyTorch, we used PyTorch functions
for communication between the parties.

V. VALIDATION AND RESULTS

We evaluate our proposed PPTC-SS approach and the
conventional baseline approach based on the execution time
required to determine an individual patient diagnoses of both
hip and knee septic arthritis. We also evaluate the impact of our
two proposed performance optimizations on execution time.
We execute each experiment five times, randomizing the order
of Party-2’s keywords in each iteration, and report the average
total execution time and communication statistics (measured
using CrypTen) in Table II.

A. Classification Performance Metrics

The weighted average of the accuracy, recall, precision
and F1-Score metrics for the affected bone joint classification
are 0.67, 0.41, 0.94, and 0.54, respectively. We obtain these
values by computing the metrics for each class (hip, knee,
hip and knee, and other) and then computing their weighted
average based on the number of true occurrences for each
class. We present the confusion matrix in Table 1. Both the
PyTorch (plaintext) and the CrypTen (MPC) configurations
yield the same results, confirming that the secret sharing
operations do not change the classification results. The high
precision indicates that false positives are low. Accuracy may
be improved, e.g., by better data cleaning and preprocessing,
tuning the similarity threshold for keyword matching, or tuning
the keywords required to determine a diagnosis. However, our
focus in this study is on the design and performance of the
proposed MPC-based classification approach.

B. Performance of Approach-1 and Approach-2

The performances of our conventional Approach-1 and the
PPTC-SS Approach-2 using MPC for affected bone joint
classification are shown in Table II, with and without the two
optimizations. For each configuration, we show the number
of keywords from Party-2 that are used for the comparisons,
the total number of comparisons between the words from the
clinical notes and the keywords, the comparison time, and



TABLE II
EXECUTION TIME AND COMMUNICATION STATISTICS OF THE AFFECTED BONE JOINT CLASSIFICATION TASK USING PYTORCH AND CRYPTEN ON A
SINGLE PATIENT NOTE CONTAINING 5,741 WORDS. ALL TIMES ARE MEASURED AS WALL-CLOCK TIME. THE BYTES COMM. AND COMM. TIME
COLUMNS REFER TO THE BYTES COMMUNICATED AND TIME SPENT COMMUNICATING, RESPECTIVELY, AVERAGED ACROSS THE THREE PARTIES.

Configuration Keywords | Number of | Comparison | Comparisons | Comm. Bytes Comm. | Total
Compared | Comparisons | Time (s) Per Second | Rounds Comm. Time (s) | Time (s)
1. PyTorch: Embeddings 24 137,784 4.53 30,415.9 3 27 0.0066 10.57
2. PyTorch: Hash Values 24 137,784 0.86 160,214.0 3 11 0.0048 16.84
3. CrypTen: Embeddings 24 137,784 177.45 776.5 13,473 16,048,850,912 | 132.56 | 197.25
4. CrypTen: Embeddings & Opt. 1 24 137,784 133.01 1,035.9 8,576 |5,678,892,939 | 95.48 152.40
5. CrypTen: Embeddings & Opt. 2 12 68,892 95.19 723.7 9,810 |3,292,532,262 | 73.44 112.35
6. CrypTen: Embeddings & Opt. 1 and 2 12 68,892 71.85 958.8 7,301 |3,092,077,860 | 55.43 89.45
7. CrypTen: Hash Values 24 137,784 41.60 3,312.1 10,341 | 372,819,488 38.95 58.30
8. CrypTen: Hash Values & Opt. 1 24 137,784 3.04 45,323.7 5,804 2,116,619 11.46 28.26
9. CrypTen: Hash Values & Opt. 2 7.6 43,632 13.93 3,132.2 7,173 118,501,198 17.78 31.31
10. CrypTen: Hash Values & Opt. 1 and 2 6.8 39,039 0.80 48,798.8 5,787 1,063,420 7.18 17.22

the number of comparisons per second. The total (wall-clock)
time is the sum of computation time, preprocessing time, and
communication time between parties.

The conventional Approach-1 configurations 1 and 2 com-
plete in 10.57s using word embeddings and 16.84s using
hashes, respectively. These conventional configurations were
18x and 3x faster than the MPC-based Approach-2 configura-
tions respectively: Configuration 3 completed in 197.25s using
word embeddings and Configuration 7 completed in 58.30s
using hashes. The MPC-based configurations incur significant
communication overhead, which increases the total runtime.
For example, Configuration 3 incurs 13,473 communication
rounds and approximately 6 GB of communication per party,
compared to only 3 rounds and 27 bytes for Configuration
1. The embeddings-based configurations incur higher commu-
nication cost compared to hash-based configurations; this is
explained by the higher dimensionality of the embeddings and
the higher cost of computing cosine similarity. Medical notes
represented with embeddings are stored in [V x 200 tensors
whereas medical notes represented with hashes are stored as
N x 1 tensors, where N is the number of words.

Our optimizations reduce the total wall-clock time of
our proposed Approach-2 from 197.25s (Configuration 3) to
89.45s (Configuration 6) when using word embeddings, and
from 58.30s (Configuration 7) to 17.22s (Configuration 10)
when using hashes.

Optimization 1 increases the comparisons per second from
3,312.1 to 45,323.7 between configurations 7 and 8, which
use hashes. However, it yields a smaller improvement with
embeddings, from 776.5 to 1,035.9 comparisons per second
between configurations 3 and 4. This is because CrypTen’s
numerical approximation of cosine similarity is slower than the
subtraction operation of two hash values. These results confirm
the net performance improvement achieved by the removal
of the conditional statements on secret-shared values and the
addition of less costly decryption operations. This improve-
ment can also be observed in the communication statistics,
with a proportionally greater improvement for the hash-based
configuration than for the embedding-based configuration.

Optimization 2 reduces the number of total comparisons and

the total wall-clock time of Approach-1 and Approach-2 if the
patient has a positive diagnosis of either knee or hip septic
arthritis. For a patient with both knee and hip septic arthritis,
the number of comparisons is reduced from 137,784 to 68,892
between configurations 3 and 5, which use embeddings, and
from 137,784 to 43,632 between configurations 7 and 9,
which use hashes. However, Optimization 2 does not speed
up negative diagnoses, since all the comparisons must be
performed to reach a negative diagnosis.

VI. CONCLUDING REMARKS

This study implements an MPC-based approach for privacy-
preserving classification of unstructured text data using clas-
sification criteria stored by another party. We evaluate our
scheme on a representative medical scenario, in which a data
analysis service provider (Party-3) can provide a service to
classify a patient based on their private medical data stored by
a primary care clinic or a hospital (Party-1) using confidential
classification criteria of an insurance provider (Party-2). Our
scheme uses secret sharing to enable the execution of the
classification task while maintaining the confidentiality of all
parties’ data. While our proposed approach is more computa-
tionally expensive than conventional computation on plaintext
data, it ensures that no party has access to other parties’ plain-
text data. Our proposed approach offers additional protection
in case of a data breach of any single party. Our scheme
generalizes to other scenarios that require classification of
unstructured text data based on the criteria specified by another
party, and which share the same confidentiality requirements
as the scenario we presented.

While our current study sheds light on the feasibility of
privacy-preserving text classification, there remain avenues for
future exploration. While we employed a more simple rule-
based classification technique, the feasibility of employing
other NLP-based text classification techniques can be explored
[7] [27]. Additional performance optimizations can also be
explored. Trade-offs between classification accuracy and com-
putational performance may differ for different classification
techniques when executing them with MPC, compared to
plaintext computation, due to the different cost characteristics
of executing various operations such as conditional statements



under MPC. Future work can thus investigate which clas-
sification techniques offer the best overall performance and
accuracy characteristics for MPC.
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